INTERNATIONAL ROAD COURSE MEASUREMENT SEMINAR Vancouver, British Columbia CANADA April 30 - May 1, 1999 # **RESULTS OF MEASUREMENTS** | Measurer | Day 1 | Day 2 | |----------|--------|--------| | LL | 4956.2 | 4956.5 | | JR | 4960.4 | 4956.6 | | RM1 | 4959.4 | 4957.2 | | PR | 4959.8 | 4957.8 | | JH | 4960.8 | 4957.9 | | JM2 | 4962.0 | 4958.0 | | JJ | 4968.9 | 4958.3 | | RB | 4959.8 | 4958.3 | | DM | 4964.3 | 4958.4 | | CM | 4962.6 | 4959.3 | | RM2 | 4967.9 | 4959.6 | | PA | 4962.4 | 4960.2 | | MK | 4964.6 | 4960.9 | | PN | 4967.4 | 4962.0 | | ТВ | 4977.1 | 4962.0 | | JM1 | 4971.5 | 4962.1 | | MS | 4967.7 | 4964.0 | | MB | 4968.2 | 4965.5 | | LW | 4968.2 | 4967.5 | | BB | 4979.2 | 4969.8 | | SB | 4970.8 | 4976.6 | | HB | 4980.4 | 4977.5 | #### AIMS/IAAF INTERNATIONAL MEASUREMENT SEMINAR #### Vancouver, British Columbia, CANADA April 30 - May 1, 1999 #### Organization of the Seminar Last fall I was asked by Gordon Rogers, AIMS Technical Director, whether I would be willing to come to Vancouver to give a measurement seminar. I responded with an enthusiastic "yes." Gordon put me in touch with Jerry Tighe, head of Run Canada, who was responsible for the general organization of the seminar. Jerry advertised, and 21 participants registered for the seminar. Of these, three were from the USA, one from Mexico, and the rest were Canadians. #### The Venue The seminar was held in the Community Centre on Denman Street and on the eastern roadways of Vancouver's Stanley Park. Jerry supplied me with maps ahead of time so I could plan a test course. I had originally intended to use the bike path, but was talked out of it, as this path is always full of bikers and dog-walkers who sometimes get resentful when measured. The course was approximately 5 km, making a loop beginning at the north end of Pipeline Road, heading south, and following the shoreline road eastward to Brockton Point, then northwest to the end of the loop. #### **Preliminary Preparation** Before the seminar, a general outline of the work, and a statement of requirements, was sent to Jerry. When I arrived everything was ready. Jerry had arranged with Alley Cat Bicycle Rentals for a fleet of mountain bikes to Burrard Inlet be made available for the seminar. Jerry mounted Jones/Oerth counters to most of the bikes so that everything would be ready when we were. Some attendees brought their own bikes. #### Conduct of the Seminar Friday, April 30 - Participants assembled at the Community Centre on Denman Street, near Stanley Park. I was introduced, made some preliminary remarks, and passed out copies of Course Measurement Procedures, the US measurement book, The Measurement of Road Race Courses, the IAAF book, and Measurement News. I explained briefly what I was going to do, and we left for Alley Cat to pick up our bikes. We rode to Stanley Park, and proceeding north of the bridge which crosses the stream from Beaver Lake I laid out a 300 meter calibration course. I then asked the group to split up into teams and check the length of what I had laid out. I also asked a team to lay out a parallel calibration course on the other side of the road, so we would have two calibration courses and could use one-way traffic on them while calibrating, a necessity with many riders and short time. Agreement of all measurements was good, and I decided that we would call both calibration courses "300 meters" for instructional purposes. Temperature correction was mentioned. The students were advised to study the book. Complete explanation is very time-consuming, and the time was better spent in practical measurement. Once the calibration courses had been marked with a PK nail at each end, I asked the students to follow me on their bikes as I rode around the course. I asked them to note carefully the way I was riding - I was following the shortest possible route, from curb to curb. At the end of this ride we rode to the Community Centre for a good lunch. After lunch we returned to Stanley Park, and we all calibrated our bikes. I laid out splits at 1, 2, 3, 4 and 5 km as well as a 1 mile split. The students followed me on this ride, each stopping at the same points where I had laid down a split. I told them not to do any calculation until they were done gathering data, as calculation slows things down. We had a lot of measuring to do, and little time. When all had completed the ride, we went to the Community Centre, where the measurers did their calculations. I asked each measurer to give me his on-site estimate of the course length, and collected from each a copy of their raw data, for use in preparing this report. I asked the measurers to try to read, or at least scan through, *Course Measurement Procedures*, so as to better understand what they had done and be better prepared for the next day. Saturday, May 1 - On Saturday morning we met briefly at the Community Centre, where we discussed what we were going to do - individual measurements of the test course. The mood this day was much less nervous than on Friday. The measurers were much more sure of themselves, and the measurement results showed a great improvement. The spirit of competitiveness was present, and people appeared to be taking pleasure in the exercise. Once everybody had completed their measurement of the course we returned to the Community Centre for lunch. After lunch I again asked everybody to record their data and give it to me, and to calculate their measured length of the course. Nearly everybody showed a significant improvement of the first day's measurement, indicating that they had a better understanding of how to follow the shortest possible route. With that done, free-flowing discussions of various measurement topics followed. Considerable interest was expressed by some of the Canadian measurers in improving their course certification system. With such a large nucleus of measurers present, and the support of Run Canada, I expect they will find a way to improve things. #### **Discussion of Results** Results of the measurements are shown following this report. Included are: - 1) List of Measurers - 2) Measurement of the calibration course - 3) Measurement results from day 1 - 4) Measurement results from day 2 On return home, I used the counts obtained by each measurer to correctly calculate each distance, using a computer. Sometimes the computer value does not agree with the value that was calculated by the measurer. In these cases, the measurer made some sort of mistake. Some common mistakes were: - Transposing numbers, or incorrect recording. I made this mistake myself in laying out the 5 km split. I correctly calculated a count of 108690 but wrote it down as 106890, and stopped at that count. That caused the general error in the 5 km split. - Rounding off calibration figures prematurely - Incorrect calculation of calibration figures - Incorrect calculation of distances - Loose riding failure to follow the shortest possible route. The small (about 9 meters) error in the placement of the 1 mile split happened because the split would have fallen in the middle of a tangent crossing the road, and I did not wish everybody to stop there. Accordingly, I stopped at the last available curbside position. I also did this at 4 km. Each measurer should study his numbers, and compare them to the computer calculations. Where there is a difference, checking the calculations will discover the reason for the difference. What is the length of the course? No one can say with certainty, but my estimate is about 4958 meters. There is no clearly-defined way to calculate course length when many measurements exist. One method is to throw away the obvious outliers and use the median measurement of the rest. This is generally reliable. Other methods have been proposed, but ultimately some judgement must be used. Most of the measurers had numbers in reasonable agreement with this. The rest of the measurers will improve with more practice. In only one day we saw an enormous improvement - more riding practice will certainly improve each measurer's riding. I believe that all participants have now learned the most important part of course measurement - the riding of a tight, correct line. All the calculation in the world cannot correct a bad measurement. The participants are ready for more measurement work. And all are now officially proclaimed as IAAF/AIMS measurers, grade "C." #### Upgrading from "C" to "B" Each measurer was given a copy of the US measurement book *Course Measurement Procedures*. In this book are instructions and forms. Students are encouraged to submit measurements to me using these forms, as if applying for USATF certification of their courses. After a student has successfully applied for and been granted 4 or 5 USATF certificates, I will see that they are upgraded from "C" level to "B" level. #### **A Personal Note** I had a wonderful time conducting this seminar. All of the measurers were enthusiastic and eager to learn, and many perceptive questions were asked. This is a good sign - an inquiring mind will learn quickly. The improvement between Day 1 and Day 2 was impressive. I was very happy to see it. I am confident that as the measurers work in their countries they will improve. In many cases little improvement is possible, as the results showed they are already well along. My thanks to Jerry Tighe and Gordon Rogers, without whose work this seminar would not have happened. I'd have hated to miss it. Peter S. Riegel Let Kiegel IAAF Road Course Measurement Area Administrator Americas Copies of this report sent to: All seminar participants Jerry Tighe, BC Athletics Gordon Rogers, Chairman, AIMS Technical Committee Hugh Jones, Secretary, AIMS Pierre Weiss, General Director, IAAF IAAF Area Measurement Administrators Jean-Francois Delasalle John Disley Dave Cundy # DATA AND CALCULATIONS FROM APRIL 30, 1999 | | PA
Paul
Adams | RB
Randy
Bannister | MB
Mike
Bjelos | HB
Helen
Brewer | BB
Bob
Britton | SB
Steve
Brown | TB
Todd
Byers | JH
Jim
Helten | JJ
Jim
Jones | MK
Milos
Kostic | LL
Laurent
Lacroix | |---|---------------------|--------------------------|----------------------|-----------------------|----------------------|---|---------------------|---------------------|---------------------|------------------------|--------------------------| | Calibrations are based on a calibration course of 300 meters. The resultant average of the four rides is divided by 300, and the answer then multiplied by the 1.001 "short course prevention factor." This yields the "constant," expressed in counts per meter. | | | | | | | | | | | | | Pre-measurement calibrations | | | | | | | | | | | | | 1 16-1110030101110 | 3608 | 2896 | 2849 | 3487 | 3525 | 3417 | 3541 | 2842.5 | 3615 | 3550.5 | 2898.5 | | | 3607 | 2895.5 | 2848 | 3483 | 3525 | 3419 | 3542 | 2842 | 3614 | 3551.5 | 2899.5 | | | 3608
3608 | 2896
2896 | 2848
2848 | 3482
3483 | 3526
3525 | 3416
3417 | 3541
3541 | 2841.5
2843 | 3615
3615 | 3550.5
3550.5 | 2899.5
2899 | | | | | | 0.400.75 | 0505.05 | 0447.05 | 2544.25 | 2042.25 | 2014 75 | 2550.75 | 2000 125 | | Average
Counts/meter | 3607.75
12.03786 | 2895.875
9.66257 | 2848.25
9.503661 | 3483.75
11.62411 | 3525.25
11.76258 | 3417.25
11.40222 | 3541.25
11.81597 | 2842.25
9.483641 | 3614.75
12.06122 | 3550.75
11.84767 | 2899.125
9.673414 | | Post-measurem | ent calibrat | ions | | | | | | | | | | | | 3607 | 2895.5 | 2847 | 3485 | 3524 | 3417 | 3542 | 2841 | 3615 | 3550 | 2899.5 | | | 3606 | 2896.5 | 2848 | 3475
3485 | 3525
3525 | 3415
3415 | 3542
3546 | 2838
2841.5 | 3618
3616 | 3546
3549 | 2899.5
2899 | | | 3606
3608 | 2896
2896 | 2847
2847 | 3485
3484 | 3525 | 3416 | 3545 | 2839 | 3617 | 3549 | 2899 | | Average | 3606.75 | 2896 | 2847.25 | 3484.75 | 3524.75 | 3415.75 | 3543.75 | 2839.875 | 3616.5 | 3548.5 | 2899.25 | | Average
Counts/meter | 12.03452 | 9.662987 | 9.500324 | 11.62745 | 11.76092 | 11.39722 | 11.82431 | 9.475716 | 12.06706 | 11.84016 | 9.673831 | | Day's constant (average of precal and postcal) Counts/meter 12.03619 9.662778 9.501993 11.62578 11.76175 11.39972 11.82014 9.479679 12.06414 11.84392 9.673622 | | | | | | | | | | | | | COUNTER REAL | DINGS OBT | AINED DUR | ING THE M | EASUREMEN | IT | | | | | | | | Start | 54700 | 45000 | 72609 | 58669 | 50690 | 53219 | 53700 | 90500 | 55573 | 54240 | 57000 | | 1 km | 66724 | 54659 | 82110 | 70302 | 62457 | 64627 | 65524 | 99977 | 67631 | 66072 | 66674.5 | | 1 mi | 7394 7.5 | 60463 | 87826 | 77347 | 69573 | 71494 | 72628 | 105670 | 74897 | 73194 | 72460 | | 2 km | 78782.5 | 64310 | 91650 | 82016 | 74298 | 76078 | 77392 | 109470 | 79746 | 77943 | 76330.5 | | 3 km | 90814.5 | 73997 | 101175 | 93656 | 86125
97874 | 87520
98893 | 89305
101081 | 118957
128400.5 | 91849
103870 | 89811
101609 | 86001
95637 | | 4 km | 102832.5 | 83624
91843 | 110647
118746 | 105237
115124 | 107895 | 108603 | 111159 | 136465.5 | 114139 | 111695 | 103866 | | 5 km | 114428 | 92925.5 | 119817 | 116570 | 109254 | 109885 | 112530 | 137526.5 | 115519 | 113040 | 104944.5 | | End LENGTHS OF S | | | | | 100201 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | | ,,,,,, | | | | EGMENIS | EAPRESSEL | IN COOK | 3 | | | | | | | | | Start | 40004 | 9659 | 9501 | 11633 | 11767 | 11408 | 11824 | 9477 | 12058 | 11832 | 9674.5 | | 1 km | 12024
7223.5 | 5804 | 5716 | 7045 | 7116 | 6867 | 7104 | 5693 | 7266 | 7122 | 5785.5 | | 1 mi
2 km | 4835 | 3847 | 3824 | 4669 | 4725 | 4584 | 4764 | 3800 | 4849 | 4749 | 3870.5 | | 3 km | 12032 | 9687 | 9525 | 11640 | 11827 | 11442 | 11913 | 9487 | 12103 | 11868 | 9670.5 | | 4 km | 12018 | 9627 | 9472 | 11581 | 11749 | 11373 | 11776 | 9443.5 | 12021 | 11798 | 9636 | | 5 km | | 8219 | 8099 | 9887 | 10021 | 9710 | 10078 | 8065 | 10269 | 10086 | 8229 | | End | 11595.5 | 1082.5 | 1071 | 1446 | 1359 | 1282 | 1371 | 1061 | 1380 | 1345 | 1078.5 | | LENGTHS OF S | EGMENTS I | EXPRESSED | IN METER | S | | | | | | | | | Start | | 000.0 | 0000 | 4000.0 | 4000 4 | 4000 7 | 4000.0 | 000.7 | 000 5 | 000.0 | 1000.4 | | 1 km | 999.0 | 999.6 | 999.9 | 1000.6 | 1000.4 | 1000.7 | 1000.3 | 999.7 | 999.5
602.3 | 999.0 | 1000.1
598.1 | | 1 mi | 600.1 | 600.7
398.1 | 601.6
402.4 | 606.0
401.6 | 605.0
401.7 | 602.4
402.1 | 601.0
403.0 | 600.5
400.9 | 401.9 | 601.3
4 01.0 | 400.1 | | 2 km | 401.7
999.7 | 1002.5 | 1002.4 | 1001.2 | 1005.5 | 1003.7 | 1007.9 | 1000.8 | 1003.2 | 1002.0 | 999.7 | | 3 km
4 km | 998.5 | 996.3 | 996.8 | 996.1 | 998.9 | 997.7 | 996.3 | 996.2 | 996.4 | 996.1 | 996.1 | | 5 km | 550.0 | 850.6 | 852.3 | 850.4 | 852.0 | 851.8 | 852.6 | 850.8 | 851.2 | 851.6 | 850.7 | | End | 963.4 | 112.0 | 112.7 | 124.4 | 115.5 | 112.5 | 116.0 | 111.9 | 114.4 | 113.6 | 111.5 | | Tatal | 40E2 4 | 4959.8 | 4968.2 | 4980.4 | 4979.2 | 4970.8 | 4977.1 | 4960.8 | 4968.9 | 4964.6 | 4956.2 | | Total On-site estimate | 4962.4
4962.3 | 4959.8 | 4968.2 | 4935.5 | 4978.5 | 4970.8 | 4977.1 | 4960.8 | 4969.8 | 4963.2 | 4849.6 | | Precal - postcal | | | | | | | | | | | | | counts/kilometer | 3.3 | -0.4 | 3.3 | -3.3 | 1.7 | 5.0 | -8.3 | 7.9 | -5.8 | 7.5 | -0.4 | Anomalous value. Not used in calculations ## DATA AND CALCULATIONS FROM APRIL 30, 1999 | | RM1
Rodolfo
Martinez | CM
Catherine
Mather | JM1
John
McBean | DM
David
McVicker | RM2
Ron
Mierau | JM2
Jack
Miller | PN
Peter
Nishihama | JR
James
Richards | PR
Pete
Riegel | MS
Mark
Smith | LW
Les
Wright | |---|----------------------------|---------------------------|-----------------------|-------------------------|----------------------|-----------------------|--------------------------|-------------------------|----------------------|---------------------|---------------------| | Calibrations are based on a calibration course of 300 meters. The resultant average of the four rides is divided by 300, and the answer then multiplied by the 1.001 "short course prevention factor." This yields the "constant," expressed in counts per meter. | | | | | | | | | | | | | Pre-measureme | nt calibratio | ons | | | | | | | | | | | | 3558 | 3512 | 3531 | 3535 | 3433 | 3532 | 3471.5 | 3026 | 3519 | 3505 | 3514 | | | 3557 | 3513 | 3528 | 3534 | 3431 | 3527 | 3472.5 | 3027 | 3517 | 3503 | 3512 | | | 3558
3557 | 3512
3510 | 3535
3529 | 3532
3530 | 3431
3432 | 3532
3529 | 3473.5
3471.5 | 3030
3027 | 3518
3517 | 3503
3504 | 3514
3512 | | | 3337 | 3310 | 0020 | 5550 | J-102 | 3323 | 3471.5 | 3025 | 3317 | 3304 | 3312 | | Average | 3557.5 | 3511.75 | 3530.75 | 3532.75 | 3431.75 | 3530 | 3472.25 | 3027 | 3517.75 | 3503.75 | 3513 | | Counts/meter | 11.87019 | 11.71754 | 11.78094 | 11.78761 | 11.45061 | 11.77843 | 11.58574 | 10.10009 | 11.73756 | 11.69085 | 11.72171 | | Post-measureme | ent calibrat | ions | | | | | | | | | | | | 3557 | 3512 | 3530 | 3531 | used | 3528 | 3470.5 | 3028 | 3515 | 3505 | 3514 | | | 3558 | 3513 | 3530 | 3529 | another | 3529 | 3473.5 | 3027 | 3517.5 | 3504 | 3510 | | | 3557 | 3511 | 3528 | 3530 | bike | 3529 | 3470.5 | 3026 | 3517 | 3510 | 3514 | | | 3558 | 3511 | 3528 | 3531 | | 3532 | 3514 | 3033
3033 | 3519 | 3508.5 | 3512 | | Average | 3557.5 | 3511.75 | 3529 | 3530.25 | | 3529.5 | 3471.5 | 3029.4 | 3517.125 | 3506.875 | 3512.5 | | Counts/meter | 11.87019 | 11.71754 | 11.7751 | 11.77927 | 11.45061 | 11.77677 | 11.58324 | 10.1081 | 11.73547 | 11.70127 | 11.72004 | | Day's constant (| average of | procal and n | oetcal) | | | | | | | | | | Counts/meter | 11.87019 | 11.71754 | 11.77802 | 11.78344 | 11.45061 | 11.7776 | 11.58449 | 10.10409 | 11.73652 | 11.69606 | 11.72088 | | COUNTER REAL | DINGS OBT | AINED DURI | NG THE ME | ASUREME | | | | | | | | | Start | 57906 | 49817 | 51650 | 53741 | 61646 | 69030 | 50143 | 15302 | 50000 | 52005 | 40380 | | 1 km | 69767 | 61526 | 63423 | 65514 | 73094 | 80799 | 61717.5 | 25402 | 61738 | 63692 | 52106 | | 1 mi
2 km | 76885
81635 | 68559
73256 | 70506
75227 | 72577
77307 | 80025
84626 | 87866
92591 | 68670.5
73320 | 31468
35517 | 73476 | 70738
75432 | 59139 | | 3 km | 93516 | 84996 | 87036 | 89133 | 96088 | 104389 | 84947.5 | 45627 | 85214 | 87154 | 75617 | | 4 km | 105349 | 96677 | 98774 | 100880 | 107501 | 116116 | 96493.5 | 55694 | 96900 | 98813 | 87299 | | 5 km | 115434 | 106651 | 108794 | 110913 | 117241 | 126129 | 106349 | 64291 | 106890 | 108770.5 | 97280 | | End | 116775 | 107966 | 110204 | 112237 | 118532 | 127470 | 107688 | 65422 | 108211 | 110107 | 98612 | | LENGTHS OF SE | GMENTS E | XPRESSED | IN COUNTS | 8 | | | | | | | | | Start | | | | | | | | | | | | | 1 km | 11861 | 11709 | 11773 | 11773 | 11448 | 11769 | 11574.5 | 10100 | 11738 | 11687 | 11726 | | 1 mi | 7118 | 7033 | 7083 | 7063 | 6931 | 7067 | 6953 | 6066 | | 7046 | 7033 | | 2 km | 4750 | 4697 | 4721 | 4730 | 4601 | 4725 | 4649.5 | 4049 | 11738 | 4694 | 40470 | | 3 km | 11881 | 11740
11681 | 11809
11738 | 11826
11747 | 11462
11413 | 11798
11727 | 11627.5
11546 | 10110
10067 | 11738
11686 | 11722
11659 | 16478
11682 | | 4 km
5 km | 11833
10085 | 9974 | 10020 | 10033 | 9740 | 10013 | 9855.5 | 8597 | 9990 | 9957.5 | 9981 | | End | 1341 | 1315 | 1410 | 1324 | 1291 | 1341 | 1339 | 1131 | 1321 | 1336.5 | 1332 | | LENGTHS OF SE | EGMENTS E | XPRESSED | IN METERS | 3 | | | | | | | | | Start | | | | | | | | | | | | | 1 km | 999.2 | 999.3 | 999.6 | 999.1 | 999.8 | 999.3 | 999.1 | 999.6 | 1000.1 | 999.2 | 1000.4 | | 1 mi | 599.7 | 600.2 | 601.4 | 599.4 | 605.3 | 600.0 | 600.2 | 600.4 | | 602.4 | 600.0 | | 2 km | 400.2 | 400.9 | 400.8 | 401.4 | 401.8 | 401.2 | 401.4 | 400.7 | 1000.1 | 401.3 | 440= - | | 3 km | 1000.9 | 1001.9 | 1002.6
996.6 | 1003.6
996.9 | 1001.0
996.7 | 1001.7
995.7 | 1003.7
996.7 | 1000.6
996.3 | 1000.1
995.7 | 1002.2
996.8 | 1405.9
996.7 | | 4 km
5 km | 996.9
849.6 | 996.9
851.2 | 996.6
850.7 | 851.4 | 850.6 | 850.2 | 990.7
850.7 | 850.8 | 995.7
851.2 | 990.8
851.4 | 996.7
851.6 | | End | 113.0 | 112.2 | 119.7 | 112.4 | 112.7 | 113.9 | 115.6 | 111.9 | 112.6 | 114.3 | 113.6 | | | | | | | 4007.0 | 4000.0 | 4007 4 | | | | | | Total | 4959.4 | 4962.6 | 4971.5 | 4964.3 | 4967.9 | 4962.0 | 4967.4 | 4960.4 | 4959.8 | 4967.7 | 4968.2 | | On-site estimate | 4959.4 | 4962.6 | 4971.5 | 4962 | 4967.9 | 4961.9 | 4959.8 | 4938.6 | 4959.8 | 4967.7 | | | Precal - postcal | | | | | | | | | | | | | counts/kilometer | 0.0 | 0.0 | 5.8 | 8.3 | 0.0 | 1.7 | 2.5 | -8.0 | 2.1 | -10.4 | 1.7 | Anomalous value. Not used in calculations - # DATA AND CALCULATIONS FROM MAY 1, 1999 | 2 | PA
Paul
Adams | RB
Randy
Bannister | MB
Mike
Bjelos | HB
Helen
Brewer | BB
Bob
Britton | SB
Steve
Brown | TB
Todd
Byers | JH
Jim
Helten | JJ
Jim
Jones | MK
Milos
Kostic | LL
Laurent
Lacroix | |---|------------------------------|----------------------------------|------------------------------|------------------------------|----------------------------------|----------------------------------|------------------------------|----------------------------------|------------------------------|------------------------------|--| | Calibrations are based on a calibration course of 300 meters. The resultant average of the four rides is divided by 300, and the answer then multiplied by the 1.001 "short course prevention factor." This yields the "constant," expressed in counts per meter. | | | | | | | | | | | | | | 3609
3609
3610
3607 | 2896.5
2895.5
2896
2896 | 2849
2849
2849
2849 | 3489
3487
3488
3489 | 3532
3532
3530
3533 | 3394.5
3395
3395.5
3394 | 3543
3544
3544
3543 | 2841
2838
2841.5
2839 | 3642
3640
3640
3638 | 3556
3555
3556
3556 | 2899.5
2899.5
2899
2899 | | Pre-measuremen | t calibrati | ons | | | | | 0540.5 | 0000 075 | 2640 | 3555.75 | 2899.25 | | Average | 3608.75 | 2896 | 2849
9.506163 | 3488.25
11.63913 | 3531.75
11.78427 | 3394.75
11.32715 | 3543.5
11.82348 | 2839.875
9.475716 | 3640
12.14547 | 11.86435 | 9.673831 | | Counts/meter | 12.0412 | 9.662987 | 9.500103 | 11.03513 | 11.70427 | 11.02710 | | | | | 0000 | | | 3609
3610
3608
3610 | 2897
2895.5
2896
2896 | 2850
2850
2850
2850 | 3488
3490
3488
3489 | 3531
3531.5
3530.5
3531 | 3395
3393
3395
3395.5 | 3544
3545
3544
3544 | 2841
2843
2841.5
2839.5 | 3639
3639
3637
3641 | 3558
3556
3558
3556 | 2900
2900
2900
2899.5
2900.5 | | Post-measureme | nt calibra | tions | | | | | | | | | | | Average
Counts/meter | 3609.25
12.04286 | 2896.125 | 2850
9.5095 | 3488.75
11.6408 | 3531
11.78177 | 3394.625
11.32673 | 3544.25
11.82598 | 2841.25
9.480304 | 3639
12.14213 | 3557
11.86852 | 2900
9.676333 | | Day's constant (a
Counts/meter | average of
12.04203 | | 9.507832 | 11.63996 | 11.78302 | 11.32694 | 11.82473 | 9.47801 | 12.1438 | 11.86644 | 9.675082 | | COUNTER READ | INGS OB | TAINED DUR | NG THE MI
0.390656 | EASUREME
3774.985 | NT
104232.5 | | | | | **** | 70005 | | Start | 50800 | 85000 | 85061 | 5530 | 52220 | 93500 | 96800
108623 | 52130
61601 | 87423
99557 | 93247
105103 | 76665 | | 1 km | 62829 | 94659 | 94569
100282 | 17169
24212 | 63999
71083 | 104835
111686.5 | 115716 | 67287 | 106834 | 112233 | 92129 | | 1 mi | 70063
74891 | 100457.5
108325 | 100282 | 28885 | 75816 | 111000.0 | 120454 | 71083 | 111702 | 116988 | 96000 | | 2 km
3 km | 86944 | 113988 | 113624 | 40596 | 87654 | 127618 | 132294 | 80562 | 123851 | 128867 | 105675.5 | | 4 km | 98941 | 123614 | 123103 | 52194 | 99397 | 138939.5 | 144075 | 89999
98059 | 135945
146269 | 140692
150778 | 115313.5
123541.5 | | 5 km
End | 109182
110531 | 131831.5
132913.5 | 131202
132272 | 62156
63468 | 109453
110779 | 148596
149870 | 154133
155474 | 99121 | 147635 | 152115 | 124619.5 | | LENGTHS OF SE | GMENTS | EXPRESSE | IN COUNT | rs . | | | | | | | | | Start | | | | | | | | | | 44050 | | | 1 km | 12029 | 9659 | 9508 | 11639 | 11779 | 11335 | 11823 | 9471
5686 | 12134
7277 | 11856
7130 | 15464 | | 1 mi | 7234 | 5798.5 | 5713 | 7043
4673 | 7084
4733 | 6851.5 | 7093
4738 | 3796 | 4868 | 4755 | 3871 | | 2 km | 4828
12053 | 7867.5
5663 | 3813
9529 | 11711 | 11838 | 15931.5 | 11840 | 9479 | 12149 | 11879 | 9675.5 | | 3 km
4 km | 11997 | 9626 | 9479 | 11598 | 11743 | 11321.5 | 11781 | 9437 | 12094 | 11825 | 9638 | | 5 km | 10241 | 8217.5 | 8099 | 9962 | 10056 | 9656.5 | 10058 | 8060 | 10324
1366 | 10086
1337 | 8228
1078 | | End | 1349 | 1082 | 1070 | 1312 | 1326 | 1274 | 1341 | 1062 | 1300 | 1007 | 1070 | | LENGTHS OF SI | EGMENTS | EXPRESSE | IN METER | RS | | | | | | | | | Start | | 0000 | 4000.0 | 000.0 | 999.7 | 1000.7 | 999.9 | 999.3 | 999.2 | 999.1 | | | 1 km | 998.9
600.7 | 999.6
600.1 | 1000.0
600.9 | 999.9
605.1 | 999.7
601.2 | 604.9 | 599.8 | 599.9 | 599.2 | 600.9 | 1598.3 | | 1 mi
2 km | 400.9 | 814.2 | 401.0 | 401.5 | 401.7 | | 400.7 | 400.5 | 400.9 | 400.7 | 400.1 | | 3 km | 1000.9 | 586.0 | 1002.2 | 1006.1 | 1004.7 | 1406.5 | 1001.3 | 1000.1 | 1000.4 | 1001.1
996.5 | 1000.0
996.2 | | 4 km | 996.3 | 996.2 | 997.0 | 996.4 | 996.6 | 999.5 | 996.3
850.6 | 995.7
850.4 | 995.9
850.1 | 850.0 | 850.4 | | 5 km | 850.4 | 850.4 | 851.8
442.5 | 855.8
112.7 | 853.4
112.5 | 852.5
112.5 | 113.4 | 112.0 | 112.5 | 112.7 | 111.4 | | End | 112.0 | 112.0 | 112.5 | | | | | | | 4960.9 | 4956.5 | | Total
On-site estimate | 4960.2
4960.2 | 4958.3
4958.4 | 4965.5
4965.5 | 4977.5
4977.6 | 4969.8
4969.8 | 4976.6
4977.5 | 4962.0
4962 | 4957.9
4957.9 | 4958.3
4958.3 | 4960.9 | 9675.5 | | Precal - postcal counts/kilometer | -1.7 | -0.4 | -3.3 | -1.7 | 2.5 | 0.4 | -2.5 | -4.6 | 3.3 | -4.2 | -2.5 | 104235 would make things come out better. Possible misrecording # DATA AND CALCULATIONS FROM MAY 1, 1999 | | RM1
Rodolfo
Martinez | CM
Catherine
Mather | JM1
John
McBean | DM
David
McVicker | RM2
Ron
Mierau | JM2
Jack
Miller | PN
Peter
Nishihama | JR
James
Richards | PR
Pete
Riegel | MS
Mark
Smith | LW
Les
Wright | |---|--|---|--|---|--|---|---|--|---|--|---| | Calibrations are based on a calibration course of 300 meters. The resultant average of the four rides is divided by 300, and the answer then multiplied by the 1.001 "short course prevention factor." This yields the "constant," expressed in counts per meter. | | | | | | | | | | | | | | 3562
3564
3562
3564 | 3521
3519
3521
3517 | 3533
3533
3532
3533 | 3537
3537
3533
3534 | 3435
3433
3434
3433 | 3532
3531
3532
3530 | 3462.75
3466.75
3463.5
3462.5 | 3031
3031
3030
3030
3029 | 3523.5
3522
3523
3522 | 3513
3513
3510.5
3512
3511 | 3523
3523
3522
3524 | | Pre-measureme | nt calibratio | ns | | | | | | | | | | | Average
Counts/meter | 3563
11.88854 | 3519.5
11.7434 | 3532.75
11.78761 | 3535.25
11.79595 | 3433.75
11.45728 | 3531.25
11.7826 | 3463.875
11.5578 | 3030.2
10.11077 | 3522.625
11.75383 | 3511.9
11.71804 | 3523
11.75508 | | | 3566
3565
3566
3565 | 3519
3521
3519
3522 | 3532
3533
3533
3533 | 3534
3535
3533
3532 | 3436
3436
3436
3436 | 3532
3533
3530
3533 | 3465.5
3465.5
3462.5
3466 | 3029
3032
3041
3032
3037 | 3522.5
3524.5
3523
3523 | 3510
3512
3511
3511.5
3511.5 | 3525
3525
3525
3524 | | Post-measureme | | | | | | | | | | | | | Average
Counts/meter | 3565.5
11.89689 | 3520.25
11.7459 | 3532.75
11.78761 | 3533.5
11.79011 | 11.45728 | 3532
11.78511 | 3464.875
11.56113 | 3034.2
10.12411 | 3523.25
11.75591 | 3511.2
11.7157 | 3524.75
11.76092 | | Day's constant (
Counts/meter | average of p
11.89271 | precal and p
11.74465 | ostcal)
11.78761 | 11.79303 | 11.45728 | 11.78386 | 11.55946 | 10.11744 | 11.75487 | 11.71687 | 11.758 | | COUNTER REAL | DINGS OBTA | AINED DURI | NG THE ME | EASUREMEN | IT | | | | | | | | Start
1 km
1 mi
2 km
3 km
4 km
5 km
End | 40368
52249
59372
64130
76027
87874
97986
99323 | 89145
100887
107931
112638
124393
136089.5
146076
147390 | 50700
62483
69575
74306
86107
97840
107868
109191 | 98359
110147.5
117208.5
121927.5
133729.5
145482
155515
156833 | 13802
25257
32121
36712
48177
59598
69345
70626 | 13178
24952
32014
36735
60260
70280
71602 | 94728
106312
113240
117884
129451
140961
150789.5
152085.5 | 11373
21478
27550
31602
41714
51781
60381
61521 | 76850
88598
95651
100357
112111
123818
133814
135128 | 51965
63674
70725
75425
87166
98839
108813
110127 | 56170
67925
75034
79750
91527
103241
113245
114578 | | LENGTHS OF SE | | | | | 70020 | 7 1002 | 102000.0 | 01321 | 155120 | 110121 | 114576 | | | -OMENTO E | XI NEGGED | | | | | | | | | | | Start 1 km 1 mi 2 km 3 km 4 km 5 km | 11881
7123
4758
11897
11847
10112
1337 | 11742
7044
4707
11755
11696.5
9986.5
1314 | 11783
7092
4731
11801
11733
10028
1323 | 11788.5
7061
4719
11802
11752.5
10033
1318 | 11455
6864
4591
11465
11421
9747
1281 | 11774
7062
4721
23525
10020
1322 | 11584
6928
4644
11567
11510
9828.5
1296 | 10105
6072
4052
10112
10067
8600
1140 | 11748
7053
4706
11754
11707
9996
1314 | 11709
7051
4700
11741
11673
9974
1314 | 11755
7109
4716
11777
11714
10004
1333 | | LENGTHS OF SE | GMENTS E | XPRESSED | IN METERS | 5 | | | | | | | | | Start
1 km | 999.0 | 999.8 | 999.6 | 999.6 | 999.8 | 999.2 | 1002.1 | 998.8 | 999.4 | 000.2 | 000.7 | | 1 mi
2 km
3 km
4 km | 598.9
400.1
1000.4
996.2 | 599.8
400.8
1000.9
995.9 | 601.6
401.4
1001.1
995.4 | 598.7
400.2
1000.8
996.6 | 599.1
400.7
1000.7
996.8 | 599.3
400.6
1996.4 | 599.3
401.7
1000.7
995.7 | 600.2
400.5
999.5
995.0 | 600.0
400.3
999.9
995.9 | 999.3
601.8
401.1
1002.1
996.3 | 999.7
604.6
401.1
1001.6
996.3 | | 5 km
End | 850.3
112.4 | 850.3
111.9 | 850.7
112.2 | 850.8
111.8 | 850.7
111.8 | 850.3
112.2 | 850.3
112.1 | 850.0
112.7 | 850.4
111.8 | 851.3
112.1 | 850.8
113.4 | | Total
On-site estimate | 4957.2
4961 | 4959.3
4959.3 | 4962.1
4962.1 | 4958.4
4958.4 | 4959.6
4961 | 4958.0
4958 | 4962.0
4960.2 | 4956.6
4957.8 | 4957.8
4957.8 | 4964.0
4963.5 | 4967.5
4967.3 | | Precal - postcal counts/kilometer | -8.3 | -2.5 | 0.0 | 5.8 | 0.0 | -2.5 | -3.3 | -13.3 | -2.1 | 2.3 | -5.8 | ## **CALIBRATION COURSE LENGTH** Two parallel calibration courses were created, one on the east side of Pipeline Road and one on the west side. Pete Riegel led the team which measured the first one on the east side. A team of four then laid out a similar 300 meters along the west side. We had four tapes, two each of 50 meters and 30 meters. Teams of four used these tapes, estimating proper tension "by feel" to check the lengths already laid out. After measuring one side, the teams switched tapes with other teams, so that each team used both a 50 meter and a 30 meter tape, and measured both of the calibration courses. There was some confusion about what to do when the other end of the calibration course was reached. Most teams established their own idea of where 300 meters lay instead of simply measuring the distance between the two nails already put in place. There was also some amount of confusion about the proper reading of a metric tape. I have encountered this in several places. The metric system may have advantages over the Imperial one, but it is definitely easier and more error-free to read a tape in decimal feet than in meters. In any case, good agreement was obtained in the taping. As none of the measurements was an obvious "outlier" the average of all measurements was chosen as the best estimate of length. | | East
Course | West
Course | | | | |---------|----------------|----------------|--|--|--| | | 300.00 | 300.00 | | | | | | 299.974 | 299.976 | | | | | | 300.03 | 299.98 | | | | | | 300.005 | 300.02 | | | | | | 299.975 | | | | | | Average | 299.9968 | 299.994 | | | | Temperature was about 10C. It was estimated, not measured. Temperature correction = .0000116*(Temp C - 20)*(measured length) = <math>.000016*(10-20)*(299.99) Temperature correction = -0.048 meters Final measured Lengths East West Course Course 299.9488 299.946 or 299.95 meters for each. A length of 300 meters was used in all on-site calculations and in this report. ## ADJUSTMENTS TO THE COURSE Here is an example of making adjustments to the intermediate marks to produce the final course. The measurement of Jim Helten on May 1 is used in this example. When only two measurements exist, the one which yields the shorter measured value is used. In this case, Jim's measurement is representative of a "good" measurement. # Assuming the start is fixed: | | Interval | Cumulative | Desired | Adjustment | | |-------|----------|------------|---------|------------|-----| | | Meters | Meters | Meters | Meters | | | Start | | 0.0 | 0.0 | 0.0 | | | 1 km | 999.3 | 999.3 | 1000.0 | 0.7 | | | 1 mi | 599.9 | 1599.2 | 1609.3 | 10.2 | | | 2 km | 400.5 | 1999.7 | 2000.0 | 0.3 | | | 3 km | 1000.1 | 2999.8 | 3000.0 | 0.2 | | | 4 km | 995.7 | 3995.5 | 4000.0 | 4.5 | | | 5 km | 850.4 | 4845.8 | 5000.0 | 154.2 * | * * | | End | 112.0 | 4957.9 | 5000.0 | 42.1 | | ^{* * *} the 5 km mark laid down by Pete was in error, so the end point is the easier one to adjust. ## Assuming the finish is fixed at the "End" point: | | Interval | Cumulative | Desired | Adjustment | | |-------|----------|------------|---------|------------|-------| | | Meters | Meters | Meters | Meters | | | Start | | 42.1 | 0.0 | -42.1 | | | 1 km | 999.3 | 1041.4 | 1000.0 | -41.4 | | | 1 mi | 599.9 | 1641.3 | 1609.3 | -31.9 | | | 2 km | 400.5 | 2041.8 | 2000.0 | -41.8 | | | 3 km | 1000.1 | 3041.9 | 3000.0 | -41.9 | | | 4 km | 995.7 | 4037.6 | 4000.0 | -37.6 | | | 5 km | 850.4 | 4888.0 | 5000.0 | 112.0 | * * * | | End | 112.0 | 5000.0 | 5000.0 | 0.0 | | | | | | | | | #### **SEMINAR ATTENDEES** Paul Adams 1181 Coutts Way Port Coquitlam BC V3L 5Y9 CANADA adamspaul@home.com Randy Bannister 48 Valleyview Dr. Winnipeg, MB R2Y 0R6 CANADA rsbann@escape.ca Mike Bjelos 2736 West 20th Ave. Vancouver, BC V6L 1H2 CANADA mike bjelos@bc.sympatico.ca Helen Brewer 3424 Paynter Road Westbank, BC V4T 1R3 CANADA Bob Britton Running Room Canada Inc. 9750 - 47 Avenue Edmonton, AB T6E 5P3 CANADA bbritton@runningroom.com Steve Brown 11-212 Main Street Penticton BC V2A 5B2 CANADA smbrown@img.net Todd Byers 330 SW 43rd Street Suite K440 Renton, WA 98055 byers_todd@hotmail.com Jim Helten 64 Morven Dr. West Vancouver, BC V7S 1B2 CANADA Jim Jones P. O. Box 8078 South Lake Tahoe, CA 96158 Milos Kostic 4341 Castle Rd. Regina, SK S4S 4W2 CANADA milosk@sk.sympatico.ca Laurent Lacroix 131 Sunnyside Blvd. Winnipeg, MB R3J 3M1 CANADA Ilacroix@mbnet.mb.ca Rodolfo Martinez Figueroa Logroño #60 Colonia Postal Delegacion: Benito Juarez CP 03410 Mexico DF MEXICO rosalino@dsi.com.mx Catherine Mather 1934 Paly Rd. Kelowna, BC V1V 2B9 CANADA mtncat@silk.net John McBean 5903 108A St. Edmonton, AB T6H 3A2 CANADA mcbean@compusmart.ab.ca David McVicker RR #3 S-14 C-4 Nelson, BC V1L 5P6 CANADA david_mcvicker @bc.sympatico.ca Ron Mierau 3-4383 Torquay Drive Victoria, BC V8N 3L3 CANADA hgarden@intertrek.com Jack Miller Box 216 Cache Creek, BC V0K 1H0 CANADA basque@wkpowerlink.com Peter Nishihama 108-15875 Marine Dr. White Rock, BC V4B 5J2 CANADA James Richards Running Room Canada Inc. 321A - 10th Street NW Calgary, AB T2N 1V7 CANADA irichards@runningroom.com Pete Riegel 3354 Kirkham Road Columbus, OH 43221 riegelpete@aol.com Mark Smith 4042 West 28th Avenue Vancouver, BC V6S 1S8 CANADA masmith@langara.bc.ca Les Wright 2261 Cold Creek Trail South Lake Tahoe, CA 96150 leswright@oakweb.com