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SUMMARY

Marathon and other road-running courses are frequently measured by means of a calibrated bicycle
wheel. The process involves an initial calibration over a standard distance, followed by the course
measurement itself. We would like to know how accurate this procedure is. We develop both
maximum-likelihood and Bayesian methods of analysis, and apply them to data collected for the 1984
Olympic Games. An innovation is the use of dynamic models to cope with changes in the calibration
constants.

Keywords: Calibration; Dynamic models; Marathen course measurement

1. Description of the Problem

The official length of a marathon course is 42, 195 metres (26 miles, 385 yards). With the
increased popularity of road running as a sport, greater attention is being given to the accurate
measurement of courses. For the tens of thousands running the London or New York
marathon, a few metres either way are unlikely to make much difference, though most would
probably feel cheated if the course measurement was significantly in error (by 500 metres say).
For those chasing major championships and “world records”, with their increasingly
substantial financial rewards, the importance of accurate measurement is accentuated.

The International Amateur Athletics Federation (IAAF) does not recognise “world records”
for the marathon, though its Handbook has recently started to list unofficial “world best
performances”. Present IAAF rules on course measurement are not very precise, and are not
rigidly enforced, and this has led to controversy over some recent “world records” including
those at New York 1981 and Rotterdam 1985. We therefore believe that the time is right for
a careful statistical assessment of the whole question of course measurement.

The most widely used, and officially recommended, method of measurement is the bicycle
method, which we now describe. An ordinary bicycle is fitted with a revolution counter, which
records accurately the number of revolutions of the front wheel. The bicycle is first ridden
over a standard distance, at least one kilometre of usually straight and flat road, in order to
calibrate the counter. The standard distance is measured by surveyor’s steel tape or electronic
distance meter, and may be assumed exact for statistical purposes. The bicycle is then ridden
over the route to be measured, care being taken to follow the shortest legal route for the
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runners. The counter is checked at the beginning and end of the measurement, and the distance
computed by simple arithmetic. If possible, the bicycle is again ridden over the standard
distance, so as to check that there has been no significant change in the calibration.

This method was introduced in England by the Road Runners Club around 1960; a reference
is Jewell (1961). It has gradually displaced other methods. It is used for all events run on the
roads. The principal sources of error are considered to be variation in the calibration conditions
due, for example, to temperature variation, and error by the measurer in failing to follow the
shortest possible course. (The latter is the main reason why crude methods of measurement,
for example using a car milometer, are considered totally unacceptable.) It is widely considered
that the method, when correctly applied by an experienced measurer, is accurate to about 1
part in 1000. This implies a tolerance of approximately 50 metres in a marathon measurement,
and this figure has been adopted (imprecisely) by the IAAF as a maximum allowable error.

The starting point for our own work is a very detailed report (Brennand et al., 1984) on
the course measurement of the 1984 Olympic Marathon in Los Angeles. In contrast with the
usual procedure, these authors used 13 measurers each of whom took a total of 12 calibration
measurements, spread over eight baselines (standard distances) as follows:

Baseline Length (km) Location

BO 1.000178 near the start
B1 0.955978 start + 6 km

B2 0.379007 start + 10 km
B3 0.601258 start + 14 km
B4 0.768575 start + 20 km
B5 0.974693 start + 26 km
B6 1.000030 start + 34 km
B7 1.000000 near the finish

In addition to the baselines, the main part of the course was divided into 13 intervals, making
25 intervals including the baseline. The data, consisting of counter readings for each interval
and each cyclist, arc presented in Table 1. This table excludes a few short sections which were
not measured by all the riders.

We do not have space to discuss the numerous data plots, error analyses, etc., included in
the report, but we do reproduce one plot of particular interest. Fig. 1 shows the estimated
number of counts per km, averaged over all riders, for each of the eight baselines. The horizontal
axis measures (approximately) the time of day. It can be seen that there is a significant variation,
of the order of 1 part in 1000, between the beginning and end of the day. Brennand et al.
suggested that this was due to temperature variation and tried fitting a linear or cosine
regression curve (amongst others) through the points. Our own impression is that there are
two distinct groups of baselines, a “morning set” BO-B3 and an “afternoon set” B4-B7. This
also corresponds to the fact that BO-B3 were measured in heavy rain, the rest in dry and
warm conditions. Therefore, it appears to us more reasonable to split the entire data set into
two halves (morning and afternoon), rather than to try to model calibration variation by a
smooth curve. We return to this point in Section 5.

The main purpose of our analysis is to give an estimate of the overall error in the method.
Such an estimate is possible because of the large number of baselines and the use of 13
independent cyclists. This involves us in the statistical theory of calibration, which has been
greatly expanded in recent years. We give a brief review of this theory in Section 2. A model
is proposed in Section 3, followed by a derivation of the maximum likelihood solution. For
various reasons which we outline as we go along, we prefer a Bayesian approach and this is
outlined in Section 4. The main data analysis then given in Sections 5 and 6, followed by a
summary of our conclusions.
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TABLE 1 (Part I)
Readings of bicycle counter for cyclists 1-7

285

1 2 3 4 5 6 7
BO 9402.5 9499.0 9639.5 9601.0 9601.0 9458.0 9348.5
BO 9404.0 9499.5 9645.0 9599.0 9598.0 9458.0 9349.5
BO 9402.0 9499.0 9642.0 9599.0 9599.0 9458.0 9348.0
BO 9403.0 9498.0 9645.5 9600.0 9601.0 9458.0 9352.0
I 121635 122870 12466.5 12419.0 12409.0 12239.0 12090.0
2 14981.5 151320 15363.5 15298.0 15297.0 15070.0 14896.0
BI 8985.0 9077.0 9214.0 9173.0 91720 9036.0 8934.0
3 33584.5 33915.0 34447.0 34301.0 34278.0 337700 33396.0
B2 3563.5 3600.0 3654.0 3638.0 36330 3585.0 3541.0
4 397870 40208.0 40811.5 40624.5 40624.0 40025.0 39558.0
B3 5651.0 5711.0 5792.5 5768.5 57700 5686.0 5617.0
5 18017.5 18211.0 18473.0 18392.0 18395.0 18128.0 179150
6 23949.0 242250 245725 24464.0 244580 24115.0 23821.0
B4 72155 7296.0 7400.0 7368.0 7366.0 7259.0 71720
7 40070.5 40530.0 411120 40940.0 40916.0 40335.0 39851.0
8 19091.0 19309.0 19585.5 19504.0 19497.0 19216.0 18984.0
BS 9146.0 9253.0 9382.5 93400 9337.0 9203.0 9095.0
9 26090.0 26383.0 26762.0 26654.0 26640.0 26257.0 25949.0
10 49814.0 50375.0 51089.5 50874.0 50848.5 50130.0 49527.0
B6 9386.0 9492.0 9626.0 9590.0 9586.5 9449.0 9330.0
1 5736.0 5800.0 5886.0 5859.0 5859.0 57720 5703.0
12 5404.0 5466.0 5543.5 5519.0 5514.0 5438.0 5374.0
13 1585.5 1602.0 1624.0 16150 1621.0 1591.0 1578.0
B7 9385.0 9494.0 9628.0 9584.0 9582.0 9445.0 9336.0
B7 9385.5 9493.0 9628.0 9585.0 9582.0 9447.0 9335.0

TABLE 1 (Part 2)
Readings of bicycle counter for cyclists 8—13
8 9 10 1 12 13

BO 9362.0 9398.0 9427.0 9343.0 92930 9680.0

BO 9364.0 9401.0 9430.0 9347.0 9295.0 9681.0

BO 9364.0 9400.0 9431.0 9343.0 9293.0 9679.0

BO 9366.0 9402.0 9431.0 9347.0 9295.0 9681.0

1 12125.0 12163.0 12196.0 12091.0 12023.0 12525.5

2 14919.0 15007.0 15032.0 14893.0 14805.0 15420.5

Bl 8952.0 8985.5 9014.0 8935.0 8882.0 92480

3 334580 33582.5 33688.5 333850 33208.0 34558.0

B2 3551.0 3562.0 3571.5 35380 35230 3666.0

4 39642.0 39792.5 399125 39529.0 39341.0 40948.0

B3 5631.0 5649.5 5668.5 5616.0 5587.0 5816.0

5 17956.0 18010.5 18075.0 17908.0 17814.0 18543.0

6 238700 23955.0 24031.0 23809.0 23682.0 24652.0

B4 7191.0 72150 72360 7169.0 71330 7426.0

7 399340 40102.5 40206.0 39830.0 39622.0 41256.0

8 19025.0 19088.5 19151.0 18976.0 18877.0 19655.0

BS 91440 9141.0 9173.0 9088.0 9045.0 9413.0

9 25999.0 26084.0 26165.0 25925.0 25795.0 26856.0

10 49626.0 49795.5 49963.0 49485.0 492480 512495

B6 9353.0 9384.5 9415.0 9327.0 9278.0 9669.5

11 5716.0 57330 5748.0 5697.0 5669.0 5904.0

12 5386.0 5402.0 5419.0 5369.0 5344.0 5562.0

13 1575.0 1576.0 1588.5 1568.0 1566.0 1629.5

B7 9353.0 9379.5 9410.5 9327.5 9280.0 9662.5

B7 93520 9375.5 9411.0 9321.5 9278.0 9660.0
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Fig. 1. Variation of calibration constants with time

2. Some Remarks on Statistical Calibration Theory
The classical linear calibration problem is specified by the equation

y=a+px+e (2.1)

between a quantity of interest x and a measurement y. Here « and p are unknown constants
and ¢ is a random error. We are given a calibration sample (x;, y)), 1 <i < n, with X; precisely
measured and usually controlled, and then wish to make inference about a future value, x = x’
say, based on observed y = y’. The classical estimator is &' = (y’' — &)/B where &, B are derived
from the regression of y on x. Under normality assumptions on &, this is also the maximum
likelihood estimator. Confidence intervals may be derived by Fieller’s (1954) method. The use
of X’ was criticised by Krutchkoff (1967) on the grounds that it has infinite variance, and it
is known that Fieller’s method may lead to a confidence set for x’ consisting of the whole
real line or even two disjoint semi-infinite lines. Both phenomena arise from the possibility
B ~0 and, despite Williams’ (1969) rebuttal of Krutchkoff, one is left with the feeling that
some form of conditional inference is required. This leads us naturally to a Bayesian formulation
of the problem, since in Bayesian statistics problems of conditioning are taken care of
automatically. Bayesian solutions were obtained by Hoadley (1970) and Hunter and Lamboy
(1981). Brown (1982) considered a multivariate generalisation of {(2.1), and generalised both
Fieller’s technique of interval estimation and Hoadley’s Bayesian analysis. It is evident that
Brown prefers the Bayesian approch and forceful support was given to this by Lindley, in
discussion of Brown’s paper. Lindley emphasised that a Bayesian solution of calibration
problems required only the laws of probability.

Our own approach has been strongly influenced by the Bayesian arguments of Brown and
Lindley, and we develop this in section 4. For comparison, however, it is useful to develop
also a maximum likelihood solution, which we do first.

3. Maximum Likelihood Solution

Consider now the road measurement problem, in which x is the true length of the road
being measured and y is the number of counts given by the bicycle counter. We may take a =0
in (2.1) but there are 13 different values of 8, corresponding to the 13 cyclists. Note that taking
a = 0 corresponds to assuming there is no “start-up” effect. We could treat this as an instance
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of Brown’s multivariate model, but have found it simpler to start from scratch. We consider
the model

yir = Bjzi + &1, €0 ~ N(O, s5'6%), (1<i<p, 1<j<n) (3.1)
Yujz = BiXx + &xj2s &xj2 ~ N(O, 5452 30%), (1<k<g 1<j<n)

where y;;1, Vi;2 are the counts obtained by measurer j on the ith calibration interval, the kth
course interval, respectively. We let n denote the number of measurers, p the number of
calibraton intervals, ¢ the number of course intervals. The true (known) length of the ith
calibration interval is denoted z;, and the unknown length of the kth course interval is x;.
The &’s are assumed independent with ¢ unknown, and the values of s, Skj2 are initially
taken to be known constants of proportionality. A plausible model for these is

Sijp =2 " Sk =Xk " (3.2)

where m = 0 would imply that the variance is independent of distance measured and m=1,
2 would imply that, respectively, the variance and the standard deviation are proportional to
distance. Considerations based on the independence of disjoint sections suggest that m =1 is
the right value, but we have also tried m =0, m =2 for comparison. The constant y in (3.2)
is intended to reflect the possibility that it may be harder to ride the bicycle accurately on
the course then on the calibration intervals. If this were the case, we would have 0 <y < 1.

We may now develop the maximum likelihood solutlon treatmg X =(xy,..., X,) as a vector
of parameters of interest and p=(B,, ..., B,) and ¢ as nuisance parameters. The likelihood
function is given by

(n .n)(ﬂ St ) rera CXP[—E(% {ZZ sin(ipn — Bz + Z’:UZ Skj2(Vijz — ﬁjxk)z}:l-

1, J

(3.3)
Conditionally on x, the maximum likelihood estimates of p and o are given by
Z Sij1ZiYijn + Z Sj2 Xk Yxjz2
B;=- . : (3.4)
> SipZi +Zk: Skj2 Xk
2 _ R
n(p +q)
where
R= Zz SijilVijn — 3,'2.')2 + Z;,‘Z SkjzVkjz — ﬁjxk)z (3.5)
ij J

leading to the profile likelihood

x|y, z)oc(n )(n st,) o, ()

&L J

We have retained constants of proportionality depending on the s;;, s,;, in order to allow
comparison of different models.

Maximum likelihood estimation proceeds by numerical optimisation. Under (3.2), we may
also treat y as an unknown parameter and maximise (3.6) with respect to both x and y. Apart
from the objections raised in Section 2, this procedure involves a large number of nuisance
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parameters and therefore raises the queston of whether the asymptotic theory of maximum
likelihood estimation may be applied to this case.

4. Bayesian Solution

The Bayesian method is to compute a posterior distribution p(x | y, z) under the assumption
of a prior distribution for (x, B, 6%). We shall simplify things slightly by assuming that the
prior distributions of x and of (B, ¢2) are independent, and by treating the calibration intervals
z as fixed rather than random. The posterior distribution is then given by the formula

p(x|y) = ply | x)m(x)/ f ply | x)m(x)dx (4.1)

where n(x) is the prior density of x and

ply | x) = J py|x, B, a*)n(B, o?)d(B, o?) 4.2)

plays the role of a likelihood function for x.
We vary from Hoadley (1970) and Brown (1982) by permitting a full conjugate family for

the prior density (B, o%). Suppose that vt%/a* has a y? distribution and, conditionally on o2,
B1» ..., B, are independently normal with §; having mean b, variance a; 'o%. Thus

(P, 62)oco™" "2 exp[—z%2 {vt2 + i aj(Bj—bj)z}]. (4.3)
=1

Multiplying (4.3} by (3.3) and integrating out first p and then 62, we obtain

p(y | X) oc (l"[ S%l)(l—[ s jZ)R—uIZ—n(pHI)/Z- (44)

i, Jj k., Jj

-4
I1 (aj+z Si1Z7 +; smx,f) ,

J

where
R=vt*+ Z aj(Bj — bj)z + Zz sin(ijr — szi)z + Zkz Skj2(Vkjz — Bjxk)z (4.5)
and

a;b; + Z SinZiYipn + Zk: Skj2 Xk Vkjz
Bi= ' : (4.6)

J
2 2
a;+ Z Sij12i +; Skjz Xk
i

A limiting case of this analysis is the improper prior obtained by setting v =0, a;=0. In that
case (4.6) agrees with (3.4), (4.5) with (3.5), and the only difference between (4.4) and (3.6) is
the final factor in (4.4). This factor arises because we have integrated out the nuisance
parameters, instead of maximising them as in {3.6).

In this case, therefore, it appears that the difference between the profile likelihood and
posterior density (under the improper prior) is not very great. Professor P. J. Brown has
pointed out to us that the profile likelihood (i.e. (4.4) without the final factor) fails to tend to
Zero as x, — + oo, so it cannot strictly be renormalised and treated as a posteror density.
Brown and Sundberg (1987) have studied the theoretical properties of profile likelihood and
Bayesian solutions in the general multivariate calibration model.

In the data analysis which follows, we shall assume (3.2) with m fixed. It is then convenient
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to treat y as an unknown parameter, and we may write p(y | x, y) for the expression in (4.4).
Equation (4.1) then becomes

[ plylx, p)a(x, y)dy
I§ p(y1x, p)n(x, y)dydx

where we have assumed (x, y) to be a priori independent of (B, a2).

We shall not, however, attempt to implement (4.1) or (4.7) directly. Instead, assuming the
prior density in X, 7, to be flat in the region of interest, we shall approximate p(x|y) (in the
case 7 known) or p(x, y | y) (in the case y unknown) by a multivariate normal distribution whose
mean is the point which maximises p and whose covariance matrix is the inverse of the hessian
of —log p. This is a well-known approximation which is operationally identical to treating
(4.4) as a likelthood function and applying maximum likelihood analysis. The justification,
however, lies in the quadratic approxnmatlon to —log p, and this may be checked by plots
of the likelihood surface.

In the case y unknown, this means that we maximise (4.4) with respect to x,, ..., x, and y
to obtain %,, ..., X, and § say. The inverse of the hessian matrix of —log p is an approximation
to the posterior covariance matrix, and the square roots of the diagonal elements of this
matrix are approximate standard deviations of the posterior distribution. With a stight abuse
of terminology, we shall refer to these as “standard errors”. Finally, an estimate of the total
distance

pix|y) = 4.7)

is
i= Z ik
k=1
with “standard error” equal to the square root of

Z Z cov(X,, X,).
k=11=
These procedures were implemented in Fortran, using the NAG routine EQ4CGF for

derivative-free quasi-Newton optimisation. Starting values for x, are easily obtained, and we
took 1 as the starting value of y. Convergence was surprisingly rapid considering the
dimensionality of the problem; typically about one second CPU on Imperial College’s Cyber
855. Numerical derivatives (for the standard errors) were obtained using the NAG routine
DO4AAF, adapted to handle multivariate functions.

5. Results

The first model we tried was the one defined by (3.1) and (3.2) with m =0, y treated as
unknown. Taking the improper prior v =0, a; =0, we obtain an estimate % = 30,904.1 metres
with standard error (as defined above) of 2.0 metres. We also found 9 = 0.98, standard error
0.15. The estimate X represents the total length of these 13 sections of the course—the remainder
of the marathon course included the calibration intervals, a lap of the track at the end and
a few short sections not included in the present discusson.

The estimate depends on a number of model assumptions and we now consider the effect
of each of these.

(a) effect of prior distribution on (B, 0?)

The estimate just quoted is based on an improper prior but, since there is a fair amount
of past experience with the method, it is also quite practicable to produce a proper prior of
the form (4.3). A number of different values for a;, b;, v and ¢t were tried; the total variation
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in X was 30,903.9 m. to 30,904.25 m. We conclude that the prior distribution has negligible
effect on the estimates.

(b) Approximation to posterior distribution

Recall that we are using a normal approximation to the posterior distribution instead of
carrying out the integration (4.7). Some indication of the appropriateness of this procedure
may be gained from plots of the function p(y|x, y). In Fig. 2 we plot p(y|x, 7) against
xj = {x, — E(x,)}/c.s.d.(x,) where E(x,) is the posterior mean of x, and cs.d. (x,) is the
conditional standard deviation of x, given the other parameters, both estimated via our normal
approximaton, In this plot x,, x5, ... are fixed at %,, X4, ... . Superimposed on the plot is
the standard normal density (2z)~* exp(—x;?/2). As may be seen, the two curves are
indistinguishable. We conclude that the conditional posterior distribution of x,, given the
other parameters and assuming a flat prior distribution, is exactly the normal distribution
derived from our approximation. Similar plots were obtained for x, to x,; but not for 7,
whose conditional posterior distribution was significantly skewed to the right (Fig. 3). This
figure suggests, however, the transformation y < logy, i.e. we treat log y as the unknown
parameter in place of y itself. After the transformation the picture is much closer to the normal
distribution. We also tried some contour plots of log p(y|x, 7). Fig. 4 shows a plot for the
variables (x,, x,), other parameters held fixed. The contours are nearly circular, suggesting
good conformity with the bivariate normal approximation to the conditional posterior
distribution of (x,, x,). Similar plots were obtained for other pairs of x-values. Similar plots
involving y have shown that the posterior joint distribution of x, and y, say, is far from normal,

0.5

LAY S I JN B I B B B SN B A B St o

3 -2 -1 0 1 2 3

Fig. 2. Conditional posterior density of x,

-3 -2 -1 O 1 2 3

Fig. 3. Conditional posterior density for y and standard normal curve
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i =

N

\

X3

Fig. 4. Contour plot for log posterior density of (x,, x,)

but after the transformation to log y the contours are again nearly circular, suggesting that
the bivariate normal approximation is now acceptable.

These plots cannot be taken as conclusive, since they are only one- and two-dimensional
projections of a 14-parameter function. Nevertheless they provide an indication that the normal
approximation is good, provided we make the transformation from y to log 7.

(c) Effect of m

Three values m =0, 1, 2 were tried in (3.2) and —log p(y|x, y) minimised with respect to x
and 1y, separately for each m. The minimum values obtained were 1578.3, 1552.5, 1633.8,
respectively. This suggests that m = 1 is the best fit, which accords with intuition as explained
in Section 3. The effect on X, however, is not great: 30,903.7 m. (s.e. 2.0) with m = 1, 30,902.8 m.
(s.e. 2.5) with m = 2. Presumably, the correct choice of m would be important if the method
were applied over a wider range of distances, for example if the whole course were measured
at once instead of being broken into sections. The effect on y was noticeable: $ = 2.07 (s.e.
0.32) under m =1, 1.30 (s.e. 0.20) under m = 2. Note that, contrary to expectation, we now
have > 1 (but see (¢) below).

Since data and intuition both suggest m = 1, we adopt this value in subsequent analysis,

(d) Effect of y

The estimates of 9 in the cases m =1, 2 suggest that there is evidence against y=1.
Nevertheless, when we re-fitted the model fixing y = 1, we found no change in the estimates
of X and only slight changes in standard error (1.8 in the case m = 1). We conclude that the
practical effect of y is very small.

(e) Changes in the calibraton coefficients

The possibility that the calibration coefficients aré changing with time has already been
noted (Fig. 1). This effect is potentially far more serious than any of those discussed so far,
and is discussed at length in the Los Angeles report (Brennand et al., 1984).

Residuals may be formed from the calibration data by defining

~_1 . .
rij=a S?jl(yijl_szi)a I<igp, Igj<sn

with &, Bj the Bayes or least squares estimators. Neglecting the effect of parameter estimation,
these are independent standard normal under the assumed model. For the present data, the
row means n~ 'Z;r;; are 0.83, 1.04, 0.88, 1.14, 0.72, 0.44, 0.50, —0.77, —1.39, —0.09, —1.09,
—1.24. There appears to be a clear separation between the first seven and the last five,
confirming the impression created by Fig. 1. No other plots or summary statistics calculated
from the residuals produced any clear evidence of departure from assumptions.
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The Los Angeles report makes it clear that the early measurements (first 12 rows of data)
were collected in cool, wet conditions in the morning, the remainder in warm, dry conditions
in the afternoon. This suggests splitting the data into two groups and applying the same
method of analysis to each group separately. Doing this with m = 1, y unknown, we obtain
x =12,610.4 (s.e. 0.6) for the five course intervals in the morning session, X = 18,299.7 (s.e. 0.8)
for the eight in the afternoon session, a combined total of 30,910.1 (s.e. 0.9). This is some 6 m
longer than the earlier estimate, a significant change in comparison with the standard errors.
The corresponding values of § were 0.20, 0.38 for the two groups.

Taking into account Fig. 1 and the residual analysis just reported, we conclude that this
splitting of the data is an important and necessary improvement on the original analysis. The
comparisons reported in (b)(d) were repeated, with the same broad conclusions as previously.
In particular, although we now find § <1, we could fix y = 1 with very little change in the
conclusions (total again 30,910.1, s.e. 1.1).

() Comparison between maximum likelihood and Bayesian analyses

As an alternative to the foregoing analyses, we could work directly with the profile likelihood
as shown in Section 3. Repeating the analysis of (¢) (split data, m = 1) we note some change in
9 (0.23, 0.48 for the two groups) but no change at all in the total % (30,910.1 m). The reason
for this may be that the final factor in (4.4), whose presence (in the case of a flat prior) is the
only difference between the two approaches, is almost independent of the x,’s within the
narrow range of uncertainty. It would be of interest to seec to what extent this phenomenon
is observed in other applications of the theory.

(g) Normality of error distribution

This point is important, because it is has been suggested that the principal source of error
in practice is the cyclists failure to follow the correct route. If that were correct, then most
errors would be the direction of over-measurement, resulting in a right-skewed distribution.

We have considered this by examining the residuals defined in (e), for the split-data model
with m = 1. The first four sample moments of the 156 residuals were —0.02, 1.08, —0.24, 447
which seems reasonably consistent with the theoretical values of 0, 1, 0, 3. A probability plot
(Fig. 5) is close to a straight line with the exception of a very small number of outliers. The

Cc3
4.0

f X
-

2.51

—2.07 2

_35- L 1 ¥ T T 1 C4
—-3.0 -15 0.0 1.5 3.0 45

Fig. 5. Normal probability plot for standardised residuals from calibration measurements (split data, m = 1}
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largest positive outlier (3.68), corresponds to a case in which the cyclist is known to have
overshot the baseline.

We conclude that there is no evidence to contradict the normal distribution. This conclusion
must be treated cautiously, however, since it is clear that the cyclists in Los Angeles were
exceptionally careful to follow the correct procedure. It may well be that, for a less experienced
group of measurers, there would be many outliers and a highly skewed error distribution.

6. A Dynamic Model

The Los Angeles report (Brennand et al. 1984) devotes much space to the effects of, and
ways of dealing with, changes in the calibration constants as a reslt of meteorological or other
external influences. Our own analysis has confirmed that this is a major source of concern.
It is therefore of interest to explore other ways of dealing with the problem. In this section
we fixm=y=1.

A broad class of models is expressed by the equation

ﬁj.r=ﬁj,t—1 + &, t=1, 2,---,7: (61)

where fi; , represents the value of §; at the tth calibration interval (t =0 at the start), and &,,
t > 1, represents a series of disturbances. There are numerous ways of modelling these
disturbances. The Los Angeles report considers models which are effectively equivalent to
assuming either a parametric regression function or nonparametric but subject to a local
smoothing requirement. We consider an alternative dynamic model in which the disturbances
are treated as random variables. This is very much in the spirit of state-space approaches to
time series problems (see e.g. West et al. 1985) and also fits in very well with the Bayesian
strategy we have adopted in earlier sections.

The prior distribution of p and o? is again assumed to follow (4.3) with v=0, a;=0.
Conditionally on B and ¢°, we take ¢, £,, ..., &7 to be independently N(u, 6%/t*) where u and
1 are two additional parameters. Thus we obtain the prior density

2 T
(B, & 02|, 7) o 0'"'”””6}(1){-% > (e, — u)z}- (6.2)
1

The likelihood function is given by (3.3) with §; at each appearance replaced by the appropriate
value of f3; ,. Multiplying prior and likelihood together, we have

1
ply, B, & 0% |x, g, Ty oc ;0" "PFI* -T2 exp{—-ﬁ (0'40 —20'b + cz)} (6.3)

where 8’ = (p’e’), and the matrix A, vector b and scalars ¢, and ¢, depend on y, x, u and .
Completing the square and integrating with respect to first @ and then o2, we find

040 —20b+c,=(0—-0,)’4A0—-0,)+ R,
where 0, the Bayes estimator of 0 given x, y, 7, satisfies
A0, =b.
Hence
p(y|x, p, ) oc ¢, | 4| TERTPTAO), (6.5)

In the same way as before, we may think of this expression as a likelihood function of x, u
and 7, maximising to obtain estimators X, ..., X,, i, T. An alternative “no drift” model is to
fix u =0, maximising with respect to the other parameters.

Numerical implementaton was based on the NAG routines FO34 EF and FO4AGF, to solve
(6.4) and evaluate | 4|, within the routine EO04CGF for numerical optimisation. Despite the
apparent complexity of this procedure, maximisation required only 6-7 seconds CPU time.
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We treated the first four calibration measurements (all of the same baseline, measured
consecutively) as corresponding to t = 0, then the subsequent baselines as t=1, 2, ... up to
t =T =7 for baseline B7 which was measured twice. Under i = 0 we obtained Bayes estimates
ofey,...,e;as —1.39, —0.39, —1.18, —8.72, —3.53, 2.60, — 1.38, which follow well the pattern
in Fig. 1. The overall X was 30908.19 (s.e. 1.69); —log p(y|x, u =0, t) = 1439.0 ignoring an
additive constant. Under the alternative model with x4 unknown we estimate €15 -+, E7 S
—1.40, —0.55, —1.45, —8.11, —3.51, 2.23, —1.33 with i = —2.02; % = 30908.08 (s.e. 1.69);
—log p(yl|x, i, 7)=14379. There is no significant difference in % and a “likelihood
ratio test” based on the usual chi-squared approximation would accept u = 0. The two models
(4 =0, u unknown) would of course differ if used to predict future values, a point which may
be relevant if considering the use of such models in a more general calibration context.

7. Summary and Conclusions

We have considered two principal approaches, a “static” approach, developed in Sections
3 and 4 and applied separately to the two halves of the data in Section 5, and a “dynamic”
approach developed in Section 6. The latter approach is the more aesthetically pleasing since
it avoids the somewhat ad hoc splitting of the data. The resuits, for the 13 sections being
measured, are summarised in Table 2, together with the corresponding results from the Los
Angeles report. The latter are extracted from a mass of results given in the report. Avoiding
technical details, they are the median results for the 13 cyclists and the minimum of alt 13,
each cyclist’s data being processed to obtain a separate estimate for each section.

It can be seen that the first three columns are very similar, the spread of the final estimates
being less than 2 m and therefore totally insignificant in practical terms. The final column was
however, the one which the Los Angeles authors finally adopted as their “official” measure-
ments. The rationale behind this was to provide some insurance against the risk of a short
course (“short course prevention factor”). The main advantage of our approaches over theirs
is that we are able to obtain approximate standard errors, or standard deviations of the
posterior distribution, based on a combinaton of data from all the cyclists. These have been

TABLE 2
Comparison of results

Section Our resulls Los Angeles Report
Method 11V Method 2% Median'® Minimum'®
| 1293.91 1293.84 129345 1292.51
2 1593.96 1593.87 1593.84 1562.80
3 3572.71 3573.03 3573.38 3571.52
4 423294 4233.49 4233.71 423094
5 1916.82 1917.31 1917.61 1916.35
6 255243 2549.53 2551.39 2549.56
7 4270.59 4269.68 4269.63 4267.21
8 2034.42 2033.99 2034.18 2033.32
9 2779.96 278041 2779.75 2778.89
10 5306.85 5307.70 5307.11 5303.71
1 611.10 611.03 611.14 610.65
12 575.76 575.69 575.81 575.33
13 168.64 168.62 168.70 168.00
Total 30910.09 30908.19 30909.70 308%0.79

(1) As in Section 5: split data, m = 1

{2) As in Section 6: dynamic model, u =0
(3) Median of 13 cyclists

(4) Minimum of 13 cyclists
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very small, around 2 m, suggesting that the Los Angeles measurers were in fact being excessively
conservative in their final report. The discrepancy of around 20m is still very small in
comparison with the length of a marathon, but it represents about 4 seconds running time
which could be significant if a world record is at stake.

In conclusion, we have been surprised by the small standard errors, which are much smaller
than the generally accepted tolerance of 40-50 m. We believe that this results from a
combinatton of three factors, (a) that 13 cyclists measured the course instead of the usual one,
(b) there were frequent calibration intervals incorporated into the course, (c) the cyclists were
all experienced in the method and were exceptionally careful to eliminate all controllable
errors. As an example of statistical calibration theory, the analysis illustrates the practical
application of the Bayesian approach, and through the dynamic model suggests a possible
general approach to recalibration problems.
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