
Uphills, 0ournhills and the Boston Marathon
by Bob Baumel

Some crltics of TAC's new Drop/Separation rule have argued that although
the Boston Marathon drops 5.5 meters per kilometer (which exceeds the
2 mlkm limit of the old rule as well as the f m/fm limit in the new rule),
the uphills on this course, especially the famed 'Heartbreak Hill,, have such
a devastating effect as to completely wipe out any aid provided by the drop.
I will attempt here to evaluate this argument quantitatively. I conclude
that, even under very conservative assumptions, Boston's downhills do aid
performances considerably more than its uphills hurt them.

The mathematical framework for discussing this type of question was pro-
wided by my article in Jan '89 Measurement News entitled 'Hill Effect to
Second Order. " I began that article with a race director,s hypothetical
claim: "Sure my course drops 500 meters, but it's really tough because it
climbs 1000 meters before falling 1500 meters!' Unfortunately, it,s likely
that few people read all the way through that article, due to my use of
integral calculus (although the math really wasn't as involved as in my
subsequent'Physiological Model' article in Nov'89 MN).

One person who obviously did thoroughly read and understand my.Jan ,89

article was Alan Jones, who wrote a follow-up article in July '89 MN wtth
the same title: 'Hill Effect to Second Order'. Alan applied my equations to a
local 20 km course, and found that the results agreed almost exacily with the
actual difference betrareen his race times on thls hilly 20 km course and on a
different (nat) 20 km course. This 'experiment of 

'one' 
doesn't really prove

anything, but does lend credibility to the equations.

Unfortunately, nelther Alan nor I applied the equations to any malbr courses
such as Boston. (Applying the equations to any glven course requires a very
painstaking process of data collection from topographic maps.) I did urge in
my Jan '89 article that the data be gathered for the Boston and St. George
Marathons. And Alan announced in his July '89 article that he would try
doing it for Boston. I assume that Alan just couldn't muster the energy to
pore over the topo maps to obtain the 42 kilometers of data.

Just a fevr days ago, Pete Riegel reminded me that detailed topographic data
for the Boston Marathon already exists in an old Runnerb World booklet
called The Boston Marathon As it happens, I already owned a copy of this
booklet, although I had completely forgotten about it. (pete has clearly been
around the running scene longer than I have, as he has the original 19?2
edition of this booklet, while I have only the revised 19?4 edition.)

The topographic data in this old Runnerb World booklet was obtained by
Rick Lerry for the 1967 Boston course, which wasn't exactly the same as the
present course. (tfrat 196? course dropped 5.5 m/km while the present course
drops 5.5 m/km.) But it was probably close enough that we can use it to
investigate the extent to which uphills cancel the downhills.
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The followlng diagram was obtained by digitizing the profile chart on page 18

of that old Runnerb Warld booklet, and feeding the result into the program I

wrote at the time I prepared my Jan '89 Measurement News article:
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The legend on thls dlagram lncludes the course's Net Drop and its calculated
'steepness Integral,' which are quantities needed in the equation presented

in my Jan'89 MN article. I will now review that equatlon, which can be
'written in the form:

4tt = L AxND+Bxsl (t)
'where

L ls the course's actual length.

Ls11 is the course's'eftective' length; i.e., the length of the
perfectly flat course that would produce times identical
to those run on the actual race course.

ND is the course's Net Drop; i.e., the net decrease ln eleva-
tion from Start to Flnish (negative in case of net rise).

SI is the quantity I call the 'Steepness Integral, " which
measure3 the extent to whlch the course contains steep
grades, (See Appendix for mathematical definition.)

A and B are numerical coefficients r,vhose walues may be

derived from exercise physiology exeriments involving
oxygen uptake measurements on incllned treadmllls.
The actual method of derlving A and B from such data
was explained in my Nov'89 MN article.

What does Equation (1) mean? The three terms on the right-hand-side of

this equation can be thought of as "zerolh order", "first order", and 'second
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Boston Marathon 196? (BlU boolt)

Net Drop of Eourse = 146.3 m

Steepness lntegrol = 10.5 m

Total cllmb = l4l.l m
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order" terms respectively, Let me try to explaln these lhree successive
levels of approximation:

ln the "zeroth order" approximation, rre neglect both the oA" and "B' terms
from the right-hand-side of the equation, so we are lefl with only:

Leff = L

which says that the effective length is equal to the actual length. In oiher
words, the hills have no effect at alll In a certaln sense, this isn't too bad
an approximation: In the old days when most race courses were still being
measured by car odometer, runners knew that they couldn't compare times
between one course and another, and they often blamed this on variations in
terrain. Now that numerous courses have been measured accurately, we
can see thal most of the variations between those old courses resulted from
errors in distance measurement-not from the differences in hllliness!

For a 'flrst order" approxlmatlon, we lnclude the u A" term from the equa-
tion, but contlnue to neglect the '8" term. This yields:

Lef.f = L AXND

which says that the effect of hills depends only on the net drop from start to
finish, but not on the detailed pattern of uphills and downhills. Thus, any
course with equal uphill and downhill (i.e., no net drop) ls equivalent to a
flat course of the same length. And any net decrease in elevatlon reduces the
effective length (i.e. makes the cour3e faster), no matter how many hills the
course may have between its start and finisir-. This ls actually a pr6tty gooO

approximation if the course has only gentle slopes; in that case, the energy
saved in descending one meter does almost completely cancel the extra energy
used in climbing one meter.

But if the course has sufficiently steep grades, we need all three terms from
equation (1). This is the 'second order' approximation. Whereas the 'A'
term expres*s the notion that equal uphtlls and downhills exactly cancel
each other, the oB" term indicates the residual amount by which the uphills
and dovrnhills don't cancel each other. The Steepness Integral 'SI" indicates
the extent to whlch the course has steep grades. A large SI always increases
the effective lengthi i.e., makes the course slower. The following diagrams
illustrate three courses, all with the same net drop:

Course I descends unlformly and gently from start to finish, so its SI would
be very small. The 'first order" approximation would be very accurate for
course I; i.e., the effect of the downhill can be calculated accurately knowing
only the course's net drop.

The drop in course II is not uniform, but is concentrated in one steep descent
somewhere in the middle. Because of this steep grade, course II has a bigger
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Steepness Integral than course I, and would therefore produce slower times'

But Ls course il is still a totally downhill course, it's surely a lot faster

than a flat course of the same length. In all }ikelihood, the steepness ef'f'ecl

('8" term) for course II would only slightly reduce the aid calculated from

the net drop ("A" term).

Course IIl has lots of steep uphills and downhills, so its SI would be much

bigger than for cours€s t LnO tt. ln this case, the increased difflculty due to

thi-steepness factor ("8" term) would eliminate a large portlon of the atd

calculatld from the net drop (;'A" term). In fact, il could happen that the

'8" term completely overw-heims the "A' term, so that course III (in spite of

its net drop) migtrt'actually be slower than a flat course of the same length'

Now that I've explained all the preliminartes, Iet's return to the Boston

Marathon, From the profile diagram presented earlier, we already know its

Net Drop and Steepness Integral (at least for the 195? course); namely, ND =

146.3 m and SI = i0.5 m. All we need now are values for the coefficients A

and B. In my Jan'89 MN article, I used A=4.5 and B=5' Substitution of

these values ln equatlon (1) yields (wlth all dlstances ln meters):

Leff = 42L95 658 + 52

^,2t95 606

-- irut,
Thus, the steepness term eliminates only about 87o of the aid predicted from

the net drop, ind the overall ef.tect of the hills is equivalent to shortpnlng the

course 606 meters (for a time reduction of t mln 50 sec at world-class speed

of 5.5 m/s).

But perhaps I'm being too hard on Boston, as the values of A and B are really
quite unc"italn (espeliatty the value of B). My values ln the Jan '89 artlcle

*ere derived from-the article: R. Margaria, P. Cerretelli, P' Aghemo, G' Sassi,

'Energy cost of runnlng,'Journal of Applled Physiology, v' 18, 1965, p' 567'

gctuaity, I noted that fiom Margarla's data, I had derived estimates of B

ranginj from 4 to 10, but I considered B = 5 as a 'best' estimate'

While the above-mentioned article of Margaria et. al. is probably the classic

reference on enerS;y cost of uphill and downhill running, it is still desirable

to check other (indepenOent) data on the subject. Recently, Jact Moran sent

me excerpts from Pliil Henson's Ph.D. thesis (lndiana University) containing

data for inclined treadmill running. From Hengon's data, I derived values:

; i.;i;ili;h G sUghtly hlsher tlian I obtained from Margaria's data) and

i=ia.z'(*ti"t-iu a-lot']nigtrer than my estimate from Margaria)' Henson's

experiments actuatly used a few more runners than Margarla'l, but I have

somewhal grealer confidence in my A and B estimates from Margaria's data,

which covered a grealer range of slopes.

In any case, to be as S,enerous as possible to supporters of Boston, suppose we

re-calculate its ef.fectLve length using the smallest possible value for A, and

Iargest possible value for B. In particular, let's use A = 4, whigh ls equiva-

ten[ to iete Biegel's estimate of the slope eifect in Sept '89 MN (pog" 5), and

B=18.2 which I derived from Phil Henson's data. With these figures, we

obtaln:



7

Lefr = 42L95 585+t91"
= 42195 394

= 41801

By this calculation, the steepness ef.tect would eliminate about 53% of. the aid
predicted from net drop, and the overall hill effect is equivalent to shortening
the course 394 meters (equivalent time reduction: 1 min tZ s). For refbrence,
I note that an effective shortening of 594 m would be about 2.7 limes as great
as the shortness found in validating the 1981 New York Marathon,

In spite of all this analysis, some defenders of Boston might still try arguing
that Heartbreak Hill has a far more devastating ef,f,ect than indicated by its
steepness, because of lts particular location at a polnt where many mara-
thoners'hit the wall." In response, I potnt out that a runner in top condi-
tion who is having a peak performance (the sort of performance that sets
records) does not 'hit the rarall.' In an optimally-piced performance, accor-
ding to my Nov '89 MN article, the runner speeds up on the downhllls, and
slows down on the uphills, Just enough to maintain constant energy output,
and is not fully spent until the very end of the race.

f,ppendlr: 0ellnltlon of Steepness lntegrot

The 'Steepness Integral' ls defined as

L

sr=fiif)'u,. '(o,)
0

where 'x' (restricted to the interval 0 < x < L) denotes dlstance along the
course; and 'y' is the elevation at position x. The deriuative ,dyldx, ls the
course's-local slope at posltlon x. Slnce the lntegrand conslsts of thre squard
slope, SI ls always non-nqative. The biggest contributions to this integral
come from the reglons of steepest slope (elther uphlll or downhill). Hence,
the name oSteepness Integral. "

My legend on the Boston profile diagram includes the course's 'Total Climb.
ln addltlon to lts net drop and steepness lntegral. The Total Climb, denoted
"TC", is a quantity popularized. by Ken Young, and is found by addlng up all
the uphlll elevatlon changes on the course. It can be shown rlgorously that a
course's SI, TC and ND always satisfy the inequality:

SI 2
(zx'rc + ND)2 (tz)

L

In practice, the left side of (aZ) is usually about 2.S times as great as the
right side, which suggests that we might try replacing equation (t) with:

Qlrc + no)2
LCIT X L AXND+

which would be very handy because it regui
the topographlc maps to flgure a course's TC
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